Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro.
نویسندگان
چکیده
For some bone tissue engineering strategies, direct contact of newly synthesized bone with a scaffold is important for structural continuity and stability at the scaffold/bone interface. Thus, as the polymer degrades, the support function of the scaffold could be adopted by the developing bone structure. This study was designed to determine whether poly(DL-lactide-co-glycolide) with a comonomer ratio of 75:25 supports bone apposition in vitro. Osteogenic cells derived from rat bone marrow cells were cultured for 2 weeks on polymeric two-dimensional films and three-dimensional tissue engineering scaffolds. Bacteriological grade polystyrene and tissue culture polystyrene dishes served as negative and positive controls for interfacial bone deposition, respectively. The surfaces of the prepared substrates were characterized by X-ray photoelectron spectroscopy, dynamic water contact angle, scanning electron microscopy, and atomic force microscopy. After cell culture, the elaborated matrix was examined using scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The results show that poly(DL-lactide-co-glycolide) supports appositional bone growth on both two-dimensional films and three-dimensional scaffolds, including the formation of a mineralized cement line matrix. Furthermore, surface topographical features are not required for the adherence of the cement line matrix to the polymer.
منابع مشابه
Bone Marrow Cell Colonization Of, and Extracellular Matrix Expression On, Biodegradable Polymers
Poly(DL-lactide-co-glycolide)s (PLGAs) have been proposed as substrata for bone tissue engineering. In the experiments reported herein, we sought to identify the optimum lactide to glycolide ratio, from the series 85:15, 75:25, 50:50, or poly-(DL-lactide) (PLA), for the elaboration of bone matrix by cultured rat bone marrow cells (RBMC) on two-dimensional substrates. Having identified PLGA 75:2...
متن کاملFabrication of PLGA scaffolds using soft lithography and microsyringe deposition.
Construction of biodegradable, three-dimensional scaffolds for tissue engineering has been previously described using a variety of molding and rapid prototyping techniques. In this study, we report and compare two methods for fabricating poly(DL-lactide-co-glycolide) (PLGA) scaffolds with feature sizes of approximately 10-30 microm. The first technique, the pressure assisted microsyringe, is ba...
متن کاملPoly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering.
Poly(lactide-co-glycolide) (PLGA) nanofibrous composite scaffolds having nano-hydroxyapatite particles (HAp) in the fibers were prepared by electrospinning of PLGA and HAp with an average diameter of 266.6 ± 7.3 nm. Microscopy and spectroscopy characterizations confirmed integration of the crystalline HAp in the scaffolds. Agglomerates gradually appeared and increased on the fiber surface along...
متن کاملFluorescence imaging enabled poly(lactide-co-glycolide).
UNLABELLED Fluorescent biomaterials have attracted significant research efforts in the past decades. Herein, we report a new series of biodegradable, fluorescence imaging-enabled copolymers, biodegradable photoluminescent poly(lactide-co-glycolide) (BPLP-co-PLGA). Photoluminescence characterization shows that BPLP-co-PLGA solutions, films and nanoparticles all exhibit strong, tunable and stable...
متن کاملThe Influence of Copolymer Composition on PLGA/nHA Scaffolds’ Cytotoxicity and In Vitro Degradation
The influence of copolymer composition on Poly(Lactide-co-Glycolide)/nanohydroxyapatite (PLGA/nHA) composite scaffolds is studied in the context of bone tissue engineering and regenerative medicine. The composite scaffolds are fabricated by thermally-induced phase separation and the effect of bioactive nanoparticles on their in vitro degradation in phosphate-buffered solution at 37 °C is analyz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 64 2 شماره
صفحات -
تاریخ انتشار 2003